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Figure 1: The time evolution of the Fokker-Planck equation under a flow on a triangle mesh using our framework in MatLAB.

The analysis of partial differential equations (PDE) is a ubiquitous technique in computer graphics,
geometry processing, and adjacent fields. In particular, second-order parabolic PDE describe a wide variety
of interesting physical phenomena. For example, instances of the Hamilton-Jacobi equation model the
time evolution of flame front propagation and the evolution of funetions undergoing nonlinear diffusion.
As another example, the Fokker-Planck equation describes the ‘evolution of density functions driven by
stochastic processes. Both of these equations haverecently provided important means to study problemsin
image processing, computer vision, statistics, and machine learning [4-6, 9]. Hence, methods for accurately
and efficiently solving this class of PDE over geometric domains are central in geometry processing.

Myriad numerical algorithms have been proposed for solving PDE in geometry processing. Unfortu-
nately, the most popular algorithms.are unsuitable for important regimes, such as capturing nonlinear
phenomena. Some of the difficulties that arise include the strong stiffness of certain equations in the
family of second-order parabolic PDE. Even current solvers in MATLAB, such as ode23s, which is designed
to handle problems with stiff terms, struggle to provide accurate solutions to these equations efficiently.
My current research efforts are focused on developing a framework to solve second-order parabolic PDE
on curved surfaces. In particular, in my most recent work, I address this challenge by leveraging a splitting
mtegrator combined with a convex optimization step, which can readily be solved using optimization
tools such as the ones provided in MATLAB.

In what follows, Idescribe the broader impact of my research work, noting how MATLAB has facilitated
my computational work, and how my research has extended the software’s capability to work with this
family of PDE with higher accuracy.

Second-order Parabolic PDE. Second-order parabolic PDE may be thought of as generalizations of the heat
equation; these equations appear i applications where the object of interest is the density of a quantity
on a curved domain, evolving forward in time. While there is a vast array of tools available to solve
the heat equation on discrete curved domains, less is known about solving more general second-order
parabolic PDE, especially in the presence of terms that contribute nonlinearity or chaotic behavior.

Finite difference schemes, such as forward Euler, explicit Runge-Kutta formulas, backward Euler, and
the Crank-Nicolson method, are commonly used numerical integration techniques. Many second-order
parabolic PDE, however, cannot be efficiently solved on triangle meshes with these methods. The strong
stiffness of certain equations in this family is not suitable for explicit methods such as Runge-Kutta [8].
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It is for this reason that MATLAB s ode23s, which relies precisely on an implementation of Runge-Kutta
[7], can only provide low accuracy solutions to equations with stiff terms [2]. In experiments, I have also
found ode23s and other built-in solvers in MATLAB to be unable to find an appropriate time step to solve
certain equations in this family.

New framework. To address the aforementioned limitations, I propose a framework leveraging a splitting
integration strategy and an appropriate spatial discretization to solve parabolic PDE over discrete curved
surfaces. The splitting allows me to leverage the implicit integration of a well-known PDE, the heat
equation, and use a convex relaxation to deal with the challenging piece of the parabolic PDE. To derive
the convex relaxation step, I take inspiration from [1] but deal with a larger class'of equations. I apply
this new framework to three difficult second-order parabolic PDE: a nonlinear Hamilton-Jacobi equation,
the nonlinear G-equation, and the Fokker-Planck equation, all of which are solved efficiently on a variety
of curved domains and time steps using my framework. Empirically, my method improves performance
compared to the state-of-the-art in geometry processing.

MarTrAB-based software has been pivotal in the implementation of my framework to solve second-order
parabolic PDE. In particular, I use CVX for disciplined convex optimizationinMAT1AB, allowing these
second-order PDE to be solved in a few lines of code. The fact that important geometry processing
toolboxes, including gptooolbox [3], are based in MATLAB also made it the most efficient software to
implement my framework. It allowed me to focus on the research aspect of my project by obviating
the need for me to build basic geometry processing functions fromscratch. Although the recommended
solvers in MATLAB were on their own inadequate to complete the task at hand, [ nonetheless found it
convenient to derive my new framework around them. MATLAB has also allowed for easy integration
of my framework with visualization tools for sharing results

Final Remarks. My line of research lays the foundation for graphics research to implement more
advanced techniques using second-order parabolic PDE. In addition to its broader impact, my framework
has advanced the use of MATLAB to solve these PDE with challenging nonlinear or stiff terms. An
immediate avenue for future work is to-derive an Alternating Direction Method of Multipliers (ADMM)
optimization algorithm to solve the same convex relaxation problem with improved timing. Over the
next few years, [ am éxcited to work on many graphics and geometry processing applications that follow
from my framework. These include but are not limited to: position-based flow using the G-equation for
realistic models of thin flame propagation and fire, mesh editing via potential field manipulation using the
Fokker-Planek equation, new approaches to stochastic heat kernel estimation on curved meshes using the
Fokker-Planck equation, advances on texture synthesis based on nonlinear interactions, and medial axis
detection on'meshes using more general Hamilton-Jacobi equations. The aforementioned applications are
far-reaching and impact a diverse set of areas, ranging from physics-based simulation to CAD design.
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